Wen Taproot?!
What do we need to get full advantage of the Taproot-enabled features?

Leonardo Comandini — leonardocomandini@gmail.com
Satoshi Spritz — Conio

February, 2023

About me

» PoliMi, math engineering, quantitative finance
» Eternity Wall, OpenTimestamps
» Blockstream, Green Wallet, Liquid Network

Presentation Structure

VVVvVyVvVyVYVYyVVYVYVY

What is Taproot

Schnorr

MAST

Elliptic Curve Commitments (Taproot)
Why Taproot

Taproot Timeline

State of the Art

Wen (spend from) Taproot?!

Taproot Cosigner

Demo

Conclusions

What is Taproot

A Bitcoin Soft-Fork that enabled:
» Schnorr
> MAST
» Elliptic Curve Commitments (Taproot)

(and more...)

Schnorr Signature Algorithm

sig = (R, s)
where
s=r+ h(R,P,m)x

Verify if
sG == R+ h(P,R, m)P

P Linearity

> Key/signature aggregation (MuSig, MuSig2, FROST, ROAST, ...)
» Security proof

» Adaptor signatures (DLC)

>

and more...

MAST (Merklized Abstract Syntax Trees)

» Unbalanced Merkle tree
» Commit to an arbitrary set of scripts

» To prove the commitment, only a single script can be revealed
Benefits:

> Efficiency

» Privacy

Elliptic Curve Commitments (Taproot)

An elliptic curve point (a public key) can commit to some arbitrary data while still be
used for its original purpose (e.g. signing).

Q=P+ h(P|lc)G (4)
y =x+h(P|lc) (5)

> Key tweaking
» Pay-to-contract, tweak an output public key

» Sign-to-contract, tweak the nonce in the signature

Taproot

Taproot = schnorr + MAST + elliptic curve commitment

{Pi}i=1.m set of keys

{si}i=1..n set of scripts (spending conditions)

P = AggKey({P;}i=1..m) internal key

¢ = MAST ({si}i=1..n) Merkle root committing to the set of scripts
> Q= P+ h(P||c)G tweaked key

| 2
>
>
>

Ways of spending:
» Key Path Spend: produce a Schnorr signature for @

» Script Path Spend: choose a script committed to ¢, prove its commitment and
satisfy the script conditions

Why Taproot

Efficiency and Privacy

» Can commit to complex spending conditions with no extra cost (bandwidth and
fee)
» Do not need to reveal those spending conditions if spending using another path

> If spending with key path (cheaper), single sig, multi sig and wallets with complex
spending conditions all look the same, larger anonimity set

Taproot Timeline

Schnorr signature paper, 1989

Schnorr signature patent expired, Feb 2008

MAST discussed, 2013 (BIP 114, 116, 117, 341)
Taproot Mailing list announce, Jan 2018

MuSig, 2018 - fixed 2019

MuSig2, 2020

Taproot activation, Nov 2021 (BIP 340, 341, 342, 343)

vVvVvyVvVvVvyyy

State of the Art

Taproot support in Bitcoin Core, rust-bitcoin, BDK etc
MuSig (n-of-n, 3 rounds)

MuSig-DN (n-of-n, 2 rounds, ZK proofs)

Musig2 (n-of-n, 2 rounds)

FROST (t-of-n)

ROAST (t-of-n, robust and asynchronous)

Support for MuSig?2 in
https://github.com/BlockstreamResearch/secp256kl-zkp

vVvVvvyVvVVvVvyyy

https://github.com/BlockstreamResearch/secp256k1-zkp

Wen (spend from) Taproot?!

» Multisig wallets have incentives to use taproot (less fees)

» Once multisig wallets use taproot, single sig wallets can use taproot and join the
anonimity set of multisig users

> Aggregated signatures are easy to verify but complex to produce
P Parties need to run a protocol to produce such signatures in which they mutually
distrust

So let's start with a simple yet useful case.

Taproot Cosigner

» 20f2 between a Server and a Client

> Server is always online and ~always cosigns

» Client can choose the script path spending conditions
Eg.

> P = AggKey(Pc, Ps)

» s = and(Pc, after(144 x 60blocks))

» ¢ = MAST(s)

» Q=P+ h(P|c)G

Demo

» Start the Cosigning Server using taproot-cosigner-fun
(rocket + secp256kfun + BDK)

Get the Server xpub

vy

Create a Taproot descriptor with an aggregated key between the Server and the
Client

Generate an address and send some funds to it
Create a transaction spending those funds

Ask the Server to cosign the transaction

Partially signs the transaction with the Client key

Client aggregates the signatures

vVvYvyVvVvyVvyy

Finalize and broadcast the transaction

taproot-cosigner-fun

Conclusions

» Taproot makes privacy more convenient (1)
» Multisig wallets should lead in Taproot adoption

> Signature aggregation protocols are complex to put into production

Resources

» taproot-cosigner-fun,
https://github.com/LeoComandini/taproot-cosigner-fun

» secp256kfun, which includes a Rust implementation of MuSig2 and Frost,
https://github.com/LLFourn/secp256kfun

» MuSig2, https://eprint.iacr.org/2020/1261.pdf

» Notes on the musig module APl in secp256k1-zkp,

https://github.com/BlockstreamResearch/secp256kl-zkp/blob/master/
src/modules/musig/musig.md

https://github.com/LeoComandini/taproot-cosigner-fun
https://github.com/LLFourn/secp256kfun
https://eprint.iacr.org/2020/1261.pdf
https://github.com/BlockstreamResearch/secp256k1-zkp/blob/master/src/modules/musig/musig.md
https://github.com/BlockstreamResearch/secp256k1-zkp/blob/master/src/modules/musig/musig.md

