
Wen Taproot?!
What do we need to get full advantage of the Taproot-enabled features?

Leonardo Comandini – leonardocomandini@gmail.com
Satoshi Spritz – Conio

February, 2023

About me

I PoliMi, math engineering, quantitative finance

I Eternity Wall, OpenTimestamps

I Blockstream, Green Wallet, Liquid Network

Presentation Structure

I What is Taproot

I Schnorr

I MAST

I Elliptic Curve Commitments (Taproot)

I Why Taproot

I Taproot Timeline

I State of the Art

I Wen (spend from) Taproot?!

I Taproot Cosigner

I Demo

I Conclusions

What is Taproot

A Bitcoin Soft-Fork that enabled:

I Schnorr

I MAST

I Elliptic Curve Commitments (Taproot)

(and more...)

Schnorr Signature Algorithm

sig = (R, s) (1)

where
s = r + h(R,P,m)x (2)

Verify if
sG == R + h(P,R,m)P (3)

I Linearity

I Key/signature aggregation (MuSig, MuSig2, FROST, ROAST, ...)

I Security proof

I Adaptor signatures (DLC)

I and more...

MAST (Merklized Abstract Syntax Trees)

I Unbalanced Merkle tree

I Commit to an arbitrary set of scripts

I To prove the commitment, only a single script can be revealed

Benefits:

I Efficiency

I Privacy

Elliptic Curve Commitments (Taproot)

An elliptic curve point (a public key) can commit to some arbitrary data while still be
used for its original purpose (e.g. signing).

Q = P + h(P||c)G (4)

y = x + h(P||c) (5)

I Key tweaking

I Pay-to-contract, tweak an output public key

I Sign-to-contract, tweak the nonce in the signature

Taproot

Taproot = schnorr + MAST + elliptic curve commitment

I {Pi}i=1..m set of keys

I {si}i=1..n set of scripts (spending conditions)

I P = AggKey({Pi}i=1..m) internal key

I c = MAST ({si}i=1..n) Merkle root committing to the set of scripts

I Q = P + h(P||c)G tweaked key

Ways of spending:

I Key Path Spend: produce a Schnorr signature for Q

I Script Path Spend: choose a script committed to c , prove its commitment and
satisfy the script conditions

Why Taproot

Efficiency and Privacy

I Can commit to complex spending conditions with no extra cost (bandwidth and
fee)

I Do not need to reveal those spending conditions if spending using another path

I If spending with key path (cheaper), single sig, multi sig and wallets with complex
spending conditions all look the same, larger anonimity set

Taproot Timeline

I Schnorr signature paper, 1989

I Schnorr signature patent expired, Feb 2008

I MAST discussed, 2013 (BIP 114, 116, 117, 341)

I Taproot Mailing list announce, Jan 2018

I MuSig, 2018 - fixed 2019

I MuSig2, 2020

I Taproot activation, Nov 2021 (BIP 340, 341, 342, 343)

State of the Art

I Taproot support in Bitcoin Core, rust-bitcoin, BDK etc

I MuSig (n-of-n, 3 rounds)

I MuSig-DN (n-of-n, 2 rounds, ZK proofs)

I Musig2 (n-of-n, 2 rounds)

I FROST (t-of-n)

I ROAST (t-of-n, robust and asynchronous)

I Support for MuSig2 in
https://github.com/BlockstreamResearch/secp256k1-zkp

https://github.com/BlockstreamResearch/secp256k1-zkp

Wen (spend from) Taproot?!

I Multisig wallets have incentives to use taproot (less fees)

I Once multisig wallets use taproot, single sig wallets can use taproot and join the
anonimity set of multisig users

I Aggregated signatures are easy to verify but complex to produce

I Parties need to run a protocol to produce such signatures in which they mutually
distrust

So let’s start with a simple yet useful case.

Taproot Cosigner

I 2of2 between a Server and a Client

I Server is always online and ∼always cosigns

I Client can choose the script path spending conditions

E.g.

I P = AggKey(Pc ,Ps)

I s = and(Pc , after(144 ∗ 60blocks))

I c = MAST (s)

I Q = P + h(P|c)G

Demo

I Start the Cosigning Server using taproot-cosigner-fun

(rocket + secp256kfun + BDK)

I Get the Server xpub

I Create a Taproot descriptor with an aggregated key between the Server and the
Client

I Generate an address and send some funds to it

I Create a transaction spending those funds

I Ask the Server to cosign the transaction

I Partially signs the transaction with the Client key

I Client aggregates the signatures

I Finalize and broadcast the transaction

taproot-cosigner-fun

Conclusions

I Taproot makes privacy more convenient (!)

I Multisig wallets should lead in Taproot adoption

I Signature aggregation protocols are complex to put into production

Resources

I taproot-cosigner-fun,
https://github.com/LeoComandini/taproot-cosigner-fun

I secp256kfun, which includes a Rust implementation of MuSig2 and Frost,
https://github.com/LLFourn/secp256kfun

I MuSig2, https://eprint.iacr.org/2020/1261.pdf

I Notes on the musig module API in secp256k1-zkp,
https://github.com/BlockstreamResearch/secp256k1-zkp/blob/master/

src/modules/musig/musig.md

https://github.com/LeoComandini/taproot-cosigner-fun
https://github.com/LLFourn/secp256kfun
https://eprint.iacr.org/2020/1261.pdf
https://github.com/BlockstreamResearch/secp256k1-zkp/blob/master/src/modules/musig/musig.md
https://github.com/BlockstreamResearch/secp256k1-zkp/blob/master/src/modules/musig/musig.md

