
How DLC-bets work?

Leonardo Comandini – leonardocomandini@gmail.com
Satoshi Spritz

March, 2021



Disclaimer

I am not an expert,
this presentation serves as a starting point for a discussion on the topic.



What are DLC-bets?

I DLC: discreet log contracts

I discrete log: private key is the discrete log of public key

I DLC-bets: bets settled on the blockchain, in a trust-minimized fashion



The gamblers

Alice and Bob want to bet on the outcome of an event.

They want to do it now, without waiting for Taproot and Schnorr.

For the sake of simplicity consider a binary event, either Alice wins or Bob wins.

Alice and Bob have their keypairs, (a,A = aG ), (b,B = bG )

Alice and Bob have access to an oracle.



The Oracle

An oracle is a complex service.

It has a keypair for signing (p,P = pG ), publishes P.

For each event, it generates a nonce (k ,R = kG ), publishes R in advance, to allow
Alice and Bob to setup their bet.

For each event outcome, it publishes a corresponding message.

When the event occurs, it signs using nonce (k ,R) the message corresponding to event
occurred, and publishes the signature.



Funding Transaction

Alice and Bob create the bet output, a 2of2 output, e.g. wsh(multi(2,A,B)).

Alice and Bob create the Fundining Transation, i.e. a transaction sending some funds
to the bet output.

However they wait for signing the Funding Transaction.

Winner will be able to spend the bet output.



Contract Execution Transaction (CET)

Alice constructs CETa a transaction spending the bet output and sending funds to her
desired destination.

CETa requires some signature hash mta to be signed for the bet output.

Bob Constructs CETb, which requires mtb to spend the bet output.



Fetch Oracle Data

Oracle advertises that:

I if the event Alice bet on occurs, oracle will sign mea

I if the event Bob bet on occurs, oracle will sign meb

Oracle also publishes its signing public key P and the event nonce R.

Now Alice needs a signature from Bob on mta, and Bob a signature from Alice on mtb.



Key Idea

They will encrypt the required ECDSA signatures s.t. the Schnorr signature that with
oracle will produce will allow the winner to decrypt the signature produced by the other
gambler.

But how?
They use adaptor primitives to produce encrypted signatures (called adaptor
signatures), and they take advantage of Schnorr linearity to choose the encryption key.

Let’s have a look at those primitives.



Schnorr Signatures

def schnorr_sign(p, m, k=None):

if not k:

k = nonce(x, m)

R = k*G

P = p*G

s = k + schnorr_challenge(P, R, m)*p

return s, R

Call S = sG the ”signature point”.
If we know P, R, m we can compute the signature point before the actual signature is
produced

S = R + schnorr challenge(P,R,m)P (1)



One-Time Verifiably Encrypted Signatures A.K.A. Adaptor Signatures

I adaptor encrypt: encrypts with key (y ,Y ) a valid signature for key (x ,X ) and
message m, produces an adaptor signature

I adaptor verify: verifies an adaptor signature (i.e. that fulfills the above promises)

I adaptor decrypt: decrypts an adaptor signature using decryption key y , produces
a valid signature for key X , message m

I adaptor recover: recover the decryption key y from an adaptor signature and a
valid signaure using the same nonce

Adaptor signatures on ECDSA:

ecdsa_adaptor_encrypt(x, Y, m) -> adaptor_sig

ecdsa_adaptor_verify(X, Y, m, adaptor_sig) -> bool,

ecdsa_adaptor_decrypt(adaptor_sig, y) -> sig

ecdsa_adaptor_recover(Y, adaptor_sig, sig) -> y



Signature Encryption

Alice and Bob compute the signature points for the messages that the oracle may sign

Sa = R + schnorr challenge(P,R,mea)P (2)

Sb = R + schnorr challenge(P,R,meb)P (3)

They will use these to encrypt their signatures.
Alice produces an adaptor signature for message mtb, encrypted with signature point Sb

adaptor siga = ecdsa adaptor encrypt(a,Sb,mtb) (4)

Bob produces an adaptor signature for message mta, encrypted with signature point Sa

adaptor sigb = ecdsa adaptor encrypt(b,Sa,mta) (5)



Setup – Final Step

They exchange the adaptor signatures and verifies them

ecdsa adaptor verify(B,Sa,mta, adaptor sigb) (6)

ecdsa adaptor verify(A, Sb,mtb, adaptor siga) (7)

If verification succeeds, Alice and Bob can sign and broadcast the Funding Transaction
and wait for the event to happen.



Bet Result

Suppose that Alice wins.

Oracle signs mea, using nonce (k ,R) and publishes the signature

sa,R = schnorr sign(p,mea, k = k) (8)

Alice sees sa, and uses it to decrypt the adaptor signature produced by Bob

sigb = ecdsa adaptor decrypt(adaptor sigb, sa) (9)

Finally Alice signs mta and can spend the bet output of CETa

siga = ecdsa sign(a,mta) (10)



Conclusions

DLC-bets are possible now on Bitcoin without deploying Schnorr.

Oracles are complex services that must store event data and react to ”real world”
events.

Oracles may collude with one of the gamblers.

Several mitigations and optimizations are possible.



Discussion (and spritz) time

Cheers!



Resources

I ”Discreet Log Contracts”, Thaddeus Dryja, 2017,
https://adiabat.github.io/dlc.pdf

I Suredbits DLC blog post series, https://suredbits.com/
discreet-log-contracts-part-1-what-is-a-discreet-log-contract

I Discreet Log Contract In Progress Specification,
https://github.com/discreetlogcontracts/dlcspecs

I One-Time Verifiably Encrypted Signatures A.K.A. Adaptor Signatures,
https://github.com/LLFourn/one-time-VES

I ECDSA Adaptor signatures in secp256k1-zkp (PR),
https://github.com/ElementsProject/secp256k1-zkp/pull/117

I Pure Python toy implementation,
https://github.com/LeoComandini/adaptor-py

https://adiabat.github.io/dlc.pdf
https://suredbits.com/discreet-log-contracts-part-1-what-is-a-discreet-log-contract
https://suredbits.com/discreet-log-contracts-part-1-what-is-a-discreet-log-contract
https://github.com/discreetlogcontracts/dlcspecs
https://github.com/LLFourn/one-time-VES
https://github.com/ElementsProject/secp256k1-zkp/pull/117
https://github.com/LeoComandini/adaptor-py

